Optical forces on metallic nanoparticles induced by a photonic nanojet.

نویسندگان

  • Xudong Cui
  • Daniel Erni
  • Christian Hafner
چکیده

We investigate the optical forces acting on a metallic nanoparticle when the nanoparticle is introduced within a photonic nanojet (PNJ). Optical forces at resonance and off-resonance conditions of the microcylinder or nanoparticle are investigated. Under proper polarization conditions, the whispering gallery mode can be excited in the microcylinder, even at off resonance provided that scattering from the nanoparticle is strong enough. The optical forces are enhanced at resonance either of the single microcylinder or of the nanoparticle with respect to the forces under off-resonant illuminations. We found that the optical forces acting on the nanoparticle depend strongly on the dielectric permittivity of the nanoparticle, as well as on the intensity and the beam width of the PNJ. Hence, metallic sub-wavelength nanoparticle can be efficiently trapped by PNJs. Furthermore, the PNJ's attractive force can be simply changed to a repulsive force by varying the polarization of the incident beam. The changed sign of the force is related to the particle's polarizability and the excitation of localized surface plasmons in the nanoparticle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-field photonic forces.

A review of recent advancements in photonic forces is presented. We discuss in detail the interaction of light and sub-wavelength particles on a substrate illuminated by total internal reflection, and we study the optical forces experienced by the particles. The effects of plasmon-mode excitations on the resulting photonic forces on metallic particles are also addressed. Moreover, we explore th...

متن کامل

Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets.

We report the phenomenon of ultra-enhanced backscattering of visible light by nanoparticles facilitated by the 3-D photonic nanojet - a sub-diffraction light beam appearing at the shadow side of a plane-waveilluminated dielectric microsphere. Our rigorous numerical simulations show that backscattering intensity of nanoparticles can be enhanced up to eight orders of magnitude when locating in th...

متن کامل

Generation of highly confined optical bottle beams by exploiting the photonic nanojet effect

We report on the generation of photonic nanojets, which resemble optical bottle beams. They are realized by manipulating the illumination of dielectric microspheres. As illumination we use the outer region of deliberately truncated Bessel-Gauss beam or a focused Gaussian beam with intentionally induced spherical aberrations. For the Bessel-Gauss beam possessing a single side lobe only, the nano...

متن کامل

Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching

All-optical switching is the foundation of emerging all-optical (terabit-per-second) networks and processors. All-optical switching has attracted considerable attention, but it must ultimately support operation with femtojoule switching energies and femtosecond switching times to be effective. Here we introduce an all-optical switch architecture in the form of a dielectric sphere that focuses a...

متن کامل

Photonic nanojet array for fast detection of single nanoparticles in a flow.

We detect by optical microscopy Au and fluorescent nanoparticles (NPs) during their motion in water-based medium, using an array of dielectric microspheres that are patterned in a microwell array template. The microspheres act as lenses focusing the light originating from a microscope objective into so-called photonic nanojets that expose the medium within a microfluidic channel. When a NP is r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 16 18  شماره 

صفحات  -

تاریخ انتشار 2008